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Abstract

Dual-layer orthogonal-offset plate (DLOOP) arrays are newly
investigated arrangements of flat plates shown by numerical
simulation to have lower drag, over a range of layer distances,
than contiguous plates of equivalent frontal area at high angles
of attack.

The DLOOP arrangement takes the contiguous area of a vir-
tual plate, divides it into smaller sub-sections and relocates each
alternate sub-section to the alternate layer so that none remain
side-by-side. For example, a square chessboard DLOOP assem-
bly has an upper-layer of thirty-two black plates overlapping
a layer of thirty-two white plates. The chessboard’s orthogo-
nal offset, between plates of overlapping layers, results in zero
overlap between individual plates which is a significant feature
for solar tracking power systems to combine more photovoltaic
panels in a way that can resist higher wind specifications.

Introduction

The subset of dual-layer orthogonal-offset plate (DLOOP) ar-
rays investigated in this paper have square layer envelopes and
plates; and the plates of each layer meet at corners and not
along sides. This subset includes the chessboard DLOOP ar-
ray, henceforth called the 8× 8 array, and other similar forms
having plates in black-overlaying-white square positions which
are variously called 9× 9, ... 4× 4 arrays, depending on their
horizontal and vertical plate counts.

Figure 1: General layout of analysis domain

Of interest in this paper are the maximum forces exerted by
fluids on these arrays. The ANSYS 14.0 CFX commercial soft-
ware package with the k-ω Shear Stress Transport (SST) turbu-
lence model [3], is used to report the drag of plate arrays placed
perpendicular to what would be, in the absence of those arrays,
quasi-steady incompressible isotropic turbulent flows. Depend-
ing on whether the characteristic length is taken to be the plate
or array envelope side lengths, the Reynolds numbers of the
flows investigated are in the order of 106 to 107.

Figure 2: Mesh detail on left/right symmetry planes

Methods

The report has a baseline array envelope of 5.74m × 5.74m
and uses 46 mm thick plates. The impinging flow is air (ρ =
1.185kg.m−3; µ = 1.831× 10−5 kg m−1s−1) with an average
velocity of 35m s−1 travelling perpendicular, i.e. face-on, to
the plates and with turbulent velocity components of magnitude
10% rms.

In order to significantly reduce the computational overhead of
the analysis, the diagonal (or for odd arrays possible mid-side)
geometric symmetry of arrays was extended to the computa-
tional domain by assuming two orthogonal axes of mirror sym-
metry. This enabled results to be obtained quickly by mod-
elling just one quarter of the domain otherwise required. While
recognising that real world conditions with geometric symme-
try won’t necessarily have symmetric flow patterns, the com-
putational advantage of the approach was adopted on the basis
that:

• the flow windward of the DLOOP assembly would be
largely symmetric with only the sheltered, slower and less
forceful average leeward flows exhibiting transient asym-
metries;

• the SST is an isometric Reynolds averaged Navier-Stokes
equation approach that will average out flow asymmetries
in the baseline steady state analyses anyway; and

• results can be audited by running a transient analysis of the
full geometry, i.e. without symmetry, for some arrange-
ments as required.

The general layout of the 6× 6 array’s domain is shown NOT
TO SCALE in Figure 1. The domain in particular is propor-
tionally much larger than presented in the figure for clarity.
The analysis domain is a quarter cylinder with its axis orien-
tated in the direction of the inlet’s quasi-steady flow and passing
through the symmetric centre of the DLOOP array. The quarter
disk area of the analysis domain’s inlet and outlet are each 36×
that presented by the quarter array’s frontal surface. The anal-
ysis domain’s axis is 15× the array envelope’s side length plus
the inter-layer distance of the enclosed array. The planes of the
array’s symmetric centre are 5 array-side-lengths from the inlet
and 10 array-side-lengths from the outlet.

A tetrahedral mesh of 0.5 m maximum face size on domain sur-
faces and maximum 0.6 m otherwise fills the bulk of the analy-
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Figure 3: Drag on DLOOP arrays

sis domain. The remaining volume has smaller mesh sizes and
surrounds arrays. The latter includes prisms in 15 surface infla-
tion layers and proximity mesh sizing of 46 mm at array edges
expanding with 1.2 growth rate. The 1st inflation layer is 2 mm
thick in order to keep Y+ < 30 and have the wall functions mod-
elling the subtle effects of the viscous sub-layer effectively. A
detail figure showing the mesh on the symmetric plane surfaces
of the 6×6 array domain is given in Figure 2.

When audits of particular baseline results were undertaken with
the full geometry modelled, i.e. a transient analysis without
use of any domain symmetry, the relevant time-step was cho-
sen in the order of 10−4 s to keep the average courant number
below one and have the flow evolving at a rate compatible with
mesh sizes. The chosen time-step also allowed the solution mo-
mentum residuals to approach or better 1.5×10−5 rms-relative
within the specified allowance of 15 iterations per time-step.

Results

The drag results of the baseline DLOOP array analysis are
shown in Figure 3. The red markers in Figure 3 indicate re-
sults obtained with a half cross-wind scale 7×7 array, i.e. one
having a 2.87m× 2.87m envelope but 46 mm plate thickness
maintained. The interlayer distances, i.e. orthogonal distance
between the arrays’ layers, were varied over about 5.25 array
envelope-side-lengths (equivalent to 30 m for the baseline) to
identify drag minima distances and trends. A blue line on the
same figure indicates the analysis’ reported higher drag of a
contiguous flat plate having equivalent frontal area to that of
the baseline arrays.

Figure 4 shows physically measured drag results for square
plates reported over an extensive Reynolds number range by
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Figure 4: Drag measured on square plates, reported by Ho-
erner [2]

Hoerner[2, Fig.3-26]. Plate drag increases have been observed
and measured as high as 4% with turbulence [4], but the SST
result shown by the blue line in Figure 3 is still ≈6% above that
given, as shown in Figure 4, CD = 1.17 has been measured for
non-turbulent conditions in this Reynolds number range.

As a result of the higher than expected square plate drag CD =
1.29 reported in the baseline analysis, four additional audit anal-
yses relating to the contiguous square plate were undertaken:

1. a quarter square plate was formed for analysis from mid-
side symmetry planes rather than the diagonal ones of the
baseline which is shown with a 6×6 array in Figure 1, i.e.
results in a square frontal profile instead of triangular one



while surface area is kept constant – obtained essentially
identical results to those of the baseline reported in item
(4) below;

2. the baseline analysis domain was re-meshed with half
maximum geometric size settings, half the proximity
growth rate and twice as many inflation layers – obtained
essentially identical results to those of the baseline re-
ported in item (4) below;

3. a full square plate transient analysis without symmetry
was undertaken having a cylindrical analysis domain, i.e.
comprised all four quarters, each basically equivalent to
the baseline domain – expended several orders of mag-
nitude more computational resources and reported CD =
1.276±0.006 or about 1.0% lower drag than the baseline;
and

4. a detailed review of the baseline steady state results (and
those of audit items (1) and (2) above) over its lat-
ter 100 pseudo timesteps (0.25 s each) when the aver-
age drag force and oscillations had stabilised – showed
CD = 1.22±0.09.

Noting the marginal difference of audit outcomes, the original
blue line for contiguous plate drag CD = 1.29 was preserved
in Figure 3 in order to keep and compare analysis results based
on like computational methods. Despite this, work is ongoing
by the authors to compare matches between analysis and ex-
periment for globally unstable flows head on to plates at high
Reynolds number ranges using scale-resolving simulations.

A consistent minima in the drag coefficient of the DLOOP ar-
rays is revealed in Figure 3 for inter-layer distance in the re-
gion of one array envelope-side-length apart. In general, the
less dense array plate grids analysed showed the lowest drag
coefficient for inter-layer distances greater than approximately
three-quarters of an array envelope-side-length apart. By con-
trast, the drag trends of Figure 3 become mixed and are gen-
erally reversed for smaller layer distances, with the more dense
array plate grids showing the lowest drag coefficient at distances
below the order of their constituent plate-side-lengths apart.
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Figure 5: Drag of arrays with 450 mm between layers

In Figure 3 there is a reasonable consistency shown between the
half scale 7× 7 array’s results, shown in red, and the baseline
trend. The physics of the fluid therefore scale according to the
Reynolds number of the conditions well. This observation is
additionally supported by the results shown in Figure 5, where
the fluid velocity (and Reynolds number) range has been varied
by 700% and the drag coefficients of the 8×8 and 9×9 arrays
has changed by < 0.5%.

The drag results shown in Figure 6 are of the same baseline
analysis reported in Figure 3 however the drag coefficients of
the arrays’ front and rear layers are reported separately.

The results of Figure 6 are remarkable in terms of the consis-
tent series of drag trends it displays and particularly outside the
inter-layer distance of individual plate-side-length scales. For
arrays with an inter-layer distance above their constituent plate-
side-length apart, the drag coefficient of:

• windward layers rises asymptotically to a peak, and the
more dense the arrays’ plate grids the nearer these drags
approach the level of a long flat rectangular plate, or
stalled wing, at 90◦ angle-of attack having CD = 1.9; and

• leeward layers is a minimum when the inter-layer distance
is ≈ 1.25 envelope-side-lengths in scale.

To understand the above results it is convenient to think of the
layers with the highest plate grid density providing the best shel-
ter, so in an array that translates to higher relative drag on wind-
ward layers of arrays with the highest plate grid, and this gives
better shelter to their leeward layers that then have lesser drag.
For example the 9× 9 array will have higher drag on its wind-
ward layer and lower drag on its leeward layer relative to the
8×8 etc..

More difficult to see in Figure 6 is the drag behaviour of the
windward layer of arrays at low inter-layer distances, i.e. at
or below their individual plate-side-length scale. There is an
initial drop in the drag coefficient of the windward layer at short
inter-layer distances before the more general rise of that layer’s
drag at higher inter-layer distances takes effect. This suggests
for solar applications there may be a sweet spot for short inter-
layer distances where the drag contribution of both the front and
back layers is below the level of the area equivalent flat plate
and their combined force on the assembly significantly lower
accordingly. This has been explained in earlier research by the
authors [1], and demonstrates the reduced pressure differential
that can occur across windward layers at short layer distances
when back pressure is able to build up on the windward face of
a nearby leeward layer.

Conclusions

This work is ongoing but the general drag trends for square
dual layers of orthogonal offset plate arrays appears clear for
those having an inter-layer distance greater than the scale of
the individual plate-side-length concerned. The SST analysis
shows DLOOP drag is significantly reduced relative to contigu-
ous plates of equivalent area.

For closely packed DLOOP arrays, with inter-layer distances
in the order of, or below, their constituent plate-side-length in
scale, significant small scale turbulent flow structures are pos-
sible. These small scale structures may lead to highly energetic
flows between densely packed DLOOP layers, allowing more
exceptions to the general drag trends to emerge according to
geometric coincidences concerned. Only more detailed tran-
sient analyses, including other than Reynolds averaged Navier-
Stokes model approaches, of these closely packed arrays will
improve the predictability of their flow structures and effects.
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Figure 6: Drag distribution on front and rear layer of DLOOP arrays
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